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Abstract. A count of the number of metastable states is employed to obtain indications 
on the retrieval and spin-glass properties of asymmetrically diluted neural networks. It is 
found that the main effect is on the retrieval states. Their position, distribution and number 
depend essentially on the normalised storage parameter a’, the ratio of the number of 
memories to the mean connectivity. The effect of asymmetrical dilution on metastable 
states uncorrelated with the memories depends on the dilution mode; the number of such 
states, however, still grows exponentially with system size, even for completely asymmetrical 
networks. To the extent that asymmetry destabilises this spin-glass phase it must be doing 
it by modifying the dynamics and not by eliminating metastable states. 

It is also shown that there are no individual retrieval states with significant basins of 
attractions, for the symmetric as well as the asymmetric neural network. 

1. Introduction 

It was the imposition of symmetry on the synaptic connections (coupling constants) 
which led to a great clarification of the properties of neural networks (Hopfield 1982, 
1984, Amit et a1 1985a, b, 1987). But once an initial clarity was obtained, attention 
turned to the effects of asymmetry. Three different pressures have acted in this direction: 
biological plausibility, questions about the robustness of the results, given that no basic 
principle enforces symmetry, and a possible cognitive role for asymmetry. Parisi (1986) 
has argued that while asymmetry destabilises spin-glass states it opens up chaotic 
trajectories for the system, and those can be used to account for learning. In fact, 
trying to model learning within the standard Hopfield model, one faces the problem 
that near every input there is a spin-glass attractor. There is no way of distinguishing 
between an attractor that is a memory and one that is a spurious ‘confused’ state. If 
asymmetry can turn fixed points corresponding to confused states into chaotic trajec- 
tories, such that the correlated activity of pairs of neurons averages to zero, then the 
problem is solved without ad hoc mechanisms. Stimuli which are not within the basin 
of attraction of a memory will be ignored unless they are persistently imposed in the 
input. Following a different idea, Shinomoto (1987) has implemented the biological 
observation that each neuron has in most cases a unique function, either excitatory or 
inhibitory. This introduces an asymmetry and as a consequence provides a way of 
singling out memorised patterns from unmemorised ones. 

To relax the symmetry constraint on the synaptic strengths Jij is, however, a rather 
difficult problem, because one cannot define an energy function 

H = -f c JljSjS, 
i#j 

t On leave from Racah Institute of Physics, Hebrew University, Jerusalem, Israel. 
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and one must resort to a full dynamical theory to describe the model. Attempts in this 
direction have focused on asymmetrically diluted models, where one starts from a 
symmetrical fully connected network of N neurons and introduces asymmetry by 
cutting off synapses until the connectivity of the network is lowered to a given value 
C. Asymmetry appears to act as an additional source of noise, weakening the spin-glass 
phase and improving retrieval (Hertz et a1 1987, Feigelman and Ioffe 1986, 1987), as 
had been foreshadowed by Hopfield (1982). 

In a remarkable contribution, Derrida et a1 (1987) have shown that the dynamics 
of an asymmetrically diluted network is exactly soluble in the limit of extreme dilution 
C << In N. The result is that, for a suitable choice of the parameters, the essential 
features of associative memory of the fully connected Hopfield model are preserved, 
and perhaps even improved, under extreme dilution. While this is an impressive 
statement, the DGZ theory cannot possibly be considered a closer approximation to 
biological reality. Keeping in mind the anatomical figure for the connectivity ( =lo4),  
if the number of neurons has to be bigger than the exponential of the connectivity, it 
will be a super-astronomical number. 

It is therefore desirable to develop as many tools as possible which can provide 
insight in the intermediate regime, when the connectivity is high but not full and 
asymmetry is introduced in the process of dilution. One such approach is to try to 
count the average number of metastable states, i.e. states stable to all single spin flips, 
as a function of their overlap with the memorised patterns. Such a calculation was 
carried out for the standard (fully symmetric) Hopfield model (Gardner 1986), extend- 
ing the counting of metastable states in the SK spin glass (Bray and Moore 1980, 1981, 
Tanaka and Edwards 1980, De Dominicis et a1 1980). It was found that the structure 
of metastable states suggested by the calculation closely corresponds to the picture 
derived in the thermodynamic studies. At low loading levels, when the number of 
stored patterns p remains finite as N + a, such counting reproduces exactly the number 
of metastable states predicted by the mean-field theory (Amit et a1 1986). Near 
saturation, when p /  N = a as N + CO, the correspondence is less direct. Yet the counting 
of states gives the main features of the thermodynamical analysis, and even goes beyond 
it in its sensitivity to metastable states with low barriers. 

In fact, in the standard model, counting produces the following picture. Metastable 
states appear only in two distinct regions of phase space: in a wide band that extends 
continuously all the way from the states which are very weakly correlated with the 
stored patterns, and in a narrow band, disjoint from the first only below a certain 
critical value of a, where the metastable states are strongly correlated with a single 
stored pattern. This second group includes the retrieval states exposed by the thermo- 
dynamic analysis, and as a -+ 0 the mean correlation of states in this group with the 
stored pattern approaches unity exactly in the same way as the correlation of the 
retrieval states. The critical value of a, above which the gap between the two bands 
disappears, turns out to be 0.113, to be compared with a,=O.138 (or 0.145) (Amit et 
a1 (1987); see also the theory with one replica symmetry breaking by Crisanti er a1 
(1986)). It has been argued (Gardner 1986) that this critical value of a is not supposed 
to coincide with ac, the storage capacity of the network, because the appearance of 
this cluster of strongly correlated metastable states is not immediately related to the 
thermodynamic behaviour. However, the two values are comparable. One concludes 
that the counting approach yields a rough approximation of the storage capacity, which 
is not drastically worse than the approximation involved in, say, assuming replica 
symmetry. Thus, one can extract from such calculations information about the retrieval 
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properties of the system, which agrees qualitatively with that contained in the full 
solution of the model. This kind of approach is certainly less detailed and less 
transparent-for example, it does not give information on features like the stability to 
flipping clusters of spins, or the height of barriers between stable states. It has, however, 
the advantage that it does not require a symmetrical J,,. This is just the situation we 
would like to apply it to. 

2. The model 

As in the studies mentioned above we introduce asymmetry by combining it with 
dilution. Specifically, we consider diluted ‘Hebbian’ synapses of the form T, = J,,w,,, 
where J,, is the usual symmetric matrix 

representing the storage of p random uncorrelated patterns, and w, equals 0 or 1 
according to a given probability distribution. In general, w!, may differ from w,,, leading 
to an asymmetry of the synapses. If N is the number of neurons 

c = N (  w!,) 

is the mean resulting connectivity. Let the dilution parameter be 

y = C / N = ( w , , ) .  

While previous dynamical studies have considered the cases y + 0 (Derrida et a1 1987, 
Kree and Zippelius 1987) and y =! (Hertz et a1 1987, Feigelman and Ioffe 1986,1987) 
as N + CO, we shall allow y to take arbitrary values. 

One can consider any probability distribution for the w,.  We shall focus on three 
particularly meaningful examples. The first: 

P ( w , ,  yz)= y S ( w , - 1 ) W w , ,  - 1 ) + ( l - Y ) S ( w , ) ~ ( w , , )  
is a symmetric dilution (SD)  considered by Sompolinsky (1986)  and will serve for 
comparison. Next is a random dilution ( RD), used by Derrida er al (1987)  and Hertz 
er a1 (1987):  

P ( w , ,  w,,) = P ( w , ) P ( . ? , , )  

P ( w )  = yS(w - 1 ) + ( 1 -  y ) S ( w )  

(2Y - 1 ) S ( w ,  - 1)8(w, ,  - l ) + ( l -  Y ) S ( W ,  - l ) S ( W , , )  

+ ( 1 - Y) 8 ( w, )6 ( w,, - 1) 7a.S 
Y S ( W , ,  - 1 ) 6 ( w , , ) +  Y S ( W , , ) S ( W , ,  - 1 )  

+ ( I  - 2 Y ) S ( w t , ) 6 ( w , , )  yC4. 

with 

so that w,, and w,, are independent. The third one is an asymmetric dilution (AD) 

A = ( Tt,Tl)/ (T;, 

[ P ( w , ,  w,,) = 

The case y = of this dilution has been treated by Feigelman and Ioffe (1986, 1987) 
and by Kinzel (1987) .  In all three cases the mean connectivity is C. 

Let us also define a parameter measuring the mean symmetry of the connections: 
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and for our three cases we have 

In fact, the calculations presented here can be carried out for an arbitrary distribution 
of the w Y ,  and the result would depend on the corresponding parameters A and y only. 
Moreover, once one has chosen a given mode of dilution, A is a function of y, so in 
the following we shall omit A as an explicit argument in functions that depend on 
both parameters. 

3. The calculation 

We denote by N, the number of configurations stable to all single spin flips. In the 
absence of fast noise each spin in a stable network state is aligned with its local field, 
namely for i = 1, .  . . , N 

si = sgn( T j S j ) .  

The objective is to estimate N, as a function of a, y and the overlap 

1 
N i  

m = - si,p 

between the state {Si} and one of the p stored patterns, ( 6 f o ) .  In the N + 00 limit, for 
fixed T,, this number behaves as exp[ Nf( a, m, y)]. What one would therefore have 
to compute is the quenched average over the T,, of the function f: This implies 
introducing replicas and complicates the calculation considerably. So we will follow 
Gardner (1986) and limit ourselves to a computation of the quantity 

exp[NF(a,  m9 ?)I = (exp[Nf(a, m, Y)I)T,, = “T,,. 
This quantity gives an upper bound for exp(N(f(a ,  m, Y))~ , , ) ,  since the exponential 
function is convex. We shall see that even with this limitation we can extract interesting 
features. 

Stability to single spin flips means that all spins are aligned with their local fields, 
i.e. 

for all Si. Then 

The Trs is a sum over all 2 N  possible configurations of the network and every 
configuration that satisfies (1) contributes 1 to this sum. For a given realisation of the 
random variables {,$, w l j }  the right-hand side gives, therefore, the total number of 
states satisfying (1) at every site. 

In the thermodynamic limit one obtains (see the appendix for details) 
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where F(a, m, y )  is the value of the function 

A 
-s - 1 +-+tln(l+ r -  l / y )  

2Y 

1-m 2 4 ( T - )  l + m  2 4 ( T + )  +- In -+- In - 
2 1 - m  2 l+m (4) 

with 

sa m T" =- l T  
v/;;; 4(  T )  =r 1 dt  

--oc 

at the saddle point over the parameters r, s, and det H is the determinant of the second 
derivatives of F with respect to all saddle-point parameters. This is the expression for 
all three modes of dilution. They are distinguished by the different values of the 
symmetry parameter A introduced above, as a function of the dilution parameter y. 

It is also possible to include in the calculation only those metastable states for 
which the magnitude of the local field is at all sites above a threshold: Sihi 3 ho,  or 
A i  3 hoe This may be a way of selecting only states with sizable basins of attraction 
(Krauth and MCzard 1987, Gardner and Derrida 1988). The function F remains the 
same, and only the upper limits in the integrals of 4 change, correspondingly, to 
T' = (sa - h,/ y m)/v/;;;. We shall examine the effect of non-zero threshold in a later 
section, while here we continue with h, = 0 (i.e. equation (1) as it stands). 

In general the saddle-point equations in r and s have to be solved numerically. 
One has to keep in mind that ( N J  is an upper bound for exp N ( f ) .  If, for some values 
of a, m and y, F (  a, m, y )  < 0, this implies that there are typically no states stable to 
single spin flips, and hence no stable states at all, with those values of the parameters. 

4. The limit Q + ~ D  

The limit a +CO has been identified as the spin-glass limit in the symmetric fully 
connected models (Amit et a1 1987). In this limit one can solve the equations analyti- 
cally to find 

T 2  
F(co, m, y )  = --+ln 24( T )  -$ ln ( l -  m2)- m tanh-' m . .  , ( 5 )  2 A  

where T is given by the saddle-point equation 

This corresponds exactly to what one finds for asymmetrical SK spin glasses (Crisanti 
and Sompolinsky 1987). (For an SK spin glass the same calculation can be performed 
introducing the asymmetry either with dilution as described above or with couplings 
of the form Ju = J ; +  J t ,  where the symmetrical and antisymmetrical parts have vari- 
ances Jo cose and Jo sine, respectively. In that case A = cos2B.) 

We see that for a +co the dependence on m is strictly via the phase space factor, 
coming from the binomial distribution. In other words, when there are too many 
patterns, no individual one is meaningful anymore, and the overlap enters only as the 
magnetisation along an arbitrary diagonal of the N-dimensional hypercube. F is 
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maximal for m = 0 and decreases with m, becoming negative at a value m,(A) .  The 
value F,,, at m = 0 corresponds to taking the saddle point also in m, and thus gives 
the total number of metastable states. Moreover, dilution as such has no effect and it 
is only asymmetry that affects the number of metastable states. As a function of the 
mean symmetry A, F is a monotonically increasing function. Fmax(A = 1)  = 0.1992, as 
for the SK model (Tanaka and Edwa.rds 1980). For A + 0, F,,,= A / r .  In particular, 
for a fully asymmetric network A = 0, and (N,) = 1 (one can check that the prefactor 
of equation (3) yields 1 in this case). This is an average value, so for some realisations 
of the couplings the actual value will be higher than one, and for some zero (Crisanti 
and Sompolinsky 1987). We now turn to study finite values of a. 

5. The critical value &* 

A diluted network storing p patterns stores p N  bits of information in CN synaptic 
strengths. It is therefore meaningful (Derrida et al 1987) to replace a p /  N of the 
fully connected network with 

C; = p / C  = a /  y. 

Intuitively, one expects the retrieval ability of the network to depend primarily on C;. 
In fact, this is what we find analysing the behaviour of E The parameter a, instead, 
is still relevant for the description of the effects of the slow noise arising from random 
correlations between the stored patterns. 

For small 15, F(C;, m, y )  is positive in two distinct regions of the interval OS M S 1, 
separated by a gap where F<O: a narrow band close to m = 1, and a much broader 
region at m = 0, comprising the global maximum of F (see figure 1). This behaviour 
is the same as for the symmetric fully connected case (Gardner 1986), but here the 

,0.2 p\ ......._ 

0 
A 
LL 

0 
V 
U 

Figure 1. The behaviour of F with the overlap m for a' = 0.1 and RD. The curves are for 
different values of the parameter k =  ( 1  - y ) / y :  full curve, k = O  (a =0.1); broken curve, 
k = 1 (a = 0.05); dotted curve, k = 10 (a = 0.009). Increasing dilution does not change 
significantly the overlap of retrieval states (for d + 0 it  does not change it at all, equation 
( 6 ~ ) ) .  while F ( m  = 0 )  decreases according to equation ( 7 ) .  
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0 

parameter is 6. Thus, our bound allows for the existence of two groups of metastable 
states: one strongly correlated with an input pattern, comprising the retrieval states, 
and one centred around m =0, which are all spurious metastable states, unrelated to 
retrieval. 

For & > &*( y )  the gap disappears and the bound is not strong enough to prove 
whether the two groups remain distinct or coalesce. The fact that &*(l)  is close to 
a,, the storage capacity found in the thermodynamic solution of the fully connected 
model (Amit er a1 1986), suggests that, at least for values of y close to 1, a ' * ( y )  gives 
a rough approximation of the storage capacity of asymmetric networks. Numerically 
one finds that & * ( y )  is a very mildly varying function of y in the whole interval 
O <  yc 1 (figure 2). 

1 I I I I l l l l  I I I l l l l l l  I I 1 1 1 1 1 1 1  I I I 1 1 1 1  

c 
Comparing &*( y)  with a,( y) for the symmetrically diluted model (Sompolinsky 

1986), one finds that the behaviour as a function of y is very similar. Kinzel (1987) 
has determined &(f) numerically for the AD model ( A  = 0). His result, &,(f) = 0.15, 
agrees with a mild increase of a', with dilution. Note that for the RD model at y + O  
(in fact, in the limit C<< In N )  one has (Derrida et a1 1987) &,= 2 / ~ .  But here the 
transition is continuous and overlaps become very small as saturation is approached. 

6. The retrieval states 

One can expand F(&,  m, y )  for & small and m close to 1 to find that F is positive in 
a narrow interval around mo where the Hamming distance per spin do is 
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The width of this little peak is 

Am = A112-d312 8 
G o  

and the height of the peak is 

2 
Fo(G, m,, y )  = A2 d i .  

For A =0, the leading term in the expansion of Am and Fo goes to zero, so one has 
to consider the next order term, and this yields 

A =O. ( 6 e )  
8 

Fo(or',mo, Y ) " Y j p i  

If there are fixed points of the dynamics close to a stored pattern, they must be 
inside this band. Equation ( 6 a )  implies that their distance from the stored pattern is 
a function of G only, and not of the amount or type of dilution. Indeed, one has for 
all modes of dilution the same result as found for the specific case of symmetric dilution 
by Sompolinsky (1987). The equation, however, gives only the leading term, so this 
is exact in the G + O  limit, and approximately true for or' as high as 0.1, as shown in 
figure 1. Asymmetry, on the other hand, makes the width of the band shrink. Also 
the maximum of F goes down with asymmetry. Notice that it does not necessarily 
follow that if there are more attractors close to the same pattern asymmetry makes 
them coalesce: their mutual Hamming distance might be different from zero while 
their overlap with the pattern is the same. 

For p finite as C, N + CO, F + 0 and there is just a single stable state, coinciding at 
all sites with the stored pattern. As p increases with C, keeping G finite and fixed, 
many retrieval states appear around a given pattern. It is possible to obtain an intuitive 
understanding of the multiplicity of metastable states that arises at or' # 0 in simple 
physical terms. A small fraction of spins (ANIN, of order exp(-1/2G)) have local 
fields close to zero, and are therefore effectively decoupled from the rest of the spins 
that are frozen in their orientation by strong local fields. This system of weakly coupled 
spins can be viewed as a randomly diluted spin glass, which has an exponential number 
of metastable states, 

In N, = ANA 

(cf equation (5 ) ) .  Here A =AN/ N, so one obtains 

In N , =  N ( A N / N ) ~ =  N exp(-l/CY) 

as given by equation ( 6 c ) .  The uncoupled spins do not contribute to the overlap with 
the stored pattern, which is therefore less than 1 by an amount of order exp(-1/2G), 
equation ( 6 a ) .  Also equation ( 6 b )  can be understood in similar terms, as the dispersion 
in m due to the random magnetisations of the spin-glass states. 

Keeping in mind the value of A for R D ,  equation (6c)  implies that for this type of 
dilution the total number of strongly correlated metastable states, given by the saddle- 
point value F,, scales as (NZ)=exp(CG(G)), i.e. N is neatly substituted by C as the 
scaling factor in the exponent, with G a function of a' alone. The size of the system 
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is thus irrelevant, in this case, to both the number of retrieval states and their mean 
overlap with the stored patterns, and it only affects the fluctuations in this mean overlap, 
which go to zero as N + o ~  (equation (66), with A = C / N ) .  

7. The uncorrelated states 

For all 4 # 0, F has an absolute maximum at m = 0. The second derivative at the 
maximum goes as 

for a small; hence it is much smaller in absolute value than 1, indicating a distribution 
of metastable states much broader than the phase space distribution we have for a +CO 

(equation (5)). In other words, the bound gives configurations with macroscopic 
correlation with one of the stored patterns a better chance of being stable to single 
spin flips than random configurations. This is consistent with the fact that the remnant 
overlap in a Hopfield model with finite CY is greater than in a spin glass, which itself 
is non-zero (Amit et a1 1987, Kinzel 1985). 

As for the height of the peak at m = 0, one can expand for a small 

At fixed y this value decreases with increasing asymmetry. However, it is constant 
with respect to dilution if one dilutes in the RD mode. AD, instead, lowers F, and SD 

enhances it, with decreasing y. It is not clear whether these differences between different 
modes of dilution have immediate bearing upon the dynamical behaviour of the system 
in this uncorrelated portion of phase space. For a # 0, exp[ NF( a, 0, y ) ]  is the value 
of ( N , )  at the saddle point over the parameter m, and so it should also give the total 
number of metastable states, if for m = 0 fluctuations are negligible (Gardner 1986). 
For a fully asymmetric system equation (8) yields that this number is smaller by a 
factor exp(-fp) than for the symmetric fully connected one, in the small-a limit. 

It is interesting to note at this point that, for all finite a, one has, even for fully 
asymmetric networks, F (  a, 0, y )  > 0, and only in the a + 03 limit F (  A = 0) + 0, recover- 
ing the corresponding result obtained for an SK spin glass (Crisanti and Sompolinsky 
1987). In fact, in that limit 

Therefore F ( A  = 0) has a maximum for a finite value a,; taking for example y = f one 
finds a,  = 0.63 and F(a, ,  0, t) = 0.0343. 

Since the uncorrelated states of  the Hopfield model represent a spin-glass phase 
(Amit et a1 1987), this might seem to contradict the finding that full asymmetry destroys, 
even at T = 0 ,  the exponential growth in the number of stable states in a spin glass 
(Crisanti and Sompolinsky 1987). The apparent contradiction is readily explained, 
however, by observing that our definition of full asymmetry does not imply a total 
absence of correlations in the coupling matrix T,. In fact, higher-order correlations 
enter the game, and they do not vanish. For example, the third-order correlations 

( T j q k T k i )  = r 3 ( J U 4 k J k i >  
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are zero in an SK spin glass, due to the independence of the Ji j ,  while in the Hopfield 
model they are not zero and provide a feedback that tends to stabilise each spin in a 
frozen position. If the Jil are given by the Hebb rule, one finds 

and, as a + 00, the effects of third-order correlations (and, similarly, of higher-order 
ones) become irrelevant and one retrieves a pure SK spin glass. 

8. Probing the robustness of metastable states 

As mentioned above, one can choose to count only those metastable states where the 
local field is (in absolute value) above a threshold ho : hisi 2 ho. These can be considered 
as the fixed points of a particular non-Hamiltonian dynamics where one includes in 
the local fields a self-coupling term with negative sign, -hoSi. In general, however, 
one can simply focus on these states as a subset of metastable states, which are 
supposedly more robust to the destabilising effect of a finite temperature or an external 
noise, and are more likely to have sizable basins of attraction. To keep the discussion 
general, we shall refer to the maximum value of ha for which a state is still stable to 
all single spin flips as the stability parameter of such a state. If we restrict ourselves 
to these states, the factor F that gives their exponential growth is modified as a function 
of the threshold in the following ways. 

For a +CO, setting ho = ioG, we find 

+ln2C#I(T)-~ln(l-m2)-m tanh-’ m (9) 
( T +  io)’ 

2A F ( w ,  m, 7 )  = - 

where now T solves the saddle-point equation 

The relevant stability parameters are of order A G .  The correspondence with the SK 

spin glass is achieved when the spin-glass interaction is normalised so that (Ej Ji) = ay. 
F,,,(A = 1) decreases with increasing h, and becomes zero for io= 0.351. This means 
that for all thresholds h o < 0 . 3 5 1 G  there is still an exponentially large number of 
metastable states such that at every site the local field exceeds the threshold. 

For a + 0, we find for the maximum corresponding to uncorrelated states 

which shows that the relevant stability parameters for these states are of order 

1 
ho= y a  ln- 

a 

Finally, for the retrieval states, one has, as G + 0, 

2 
FO(4 mo, Y)-;do(doA-holy) 
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with do given by equation (6a). For A = O  one has 

From equation (1 1 a )  it follows that each retrieval fixed point has a very low stability 
parameter (h,, of order exp(-1/2;)), and it is thus expected to be easily destabilised 
by noise and to have a tiny basin of attraction. This does not imply, however, any 
retrieval difficulty. It is just an effect of the spin-glass multiplicity associated with a 
retrieval state at finite &, as discussed above. Indeed, intuitive arguments similar to 
those used to account for the multiplicity of order In N ,  = N ( A N /  N)’ ,  combined with 
equation (9), lead to an estimate of the stability parameter of such spin-glass states of 
order AN/N=exp(-1/2&),  and to a multiplicity scaling with ho as predicted by 
equation (1 1). 

Thus, very slight noise will destroy the spin-glass freezing of the uncoupled spins 
and cause much hopping around. This is consistent with the finding (Amit et a1 1987) 
that the temperature of replica symmetry breaking is (for the fully connected network) 
of order exp(-1/2&). But all this will not affect the overlap with the stored pattern, 
which will remain fixed and large, as it is determined by the rest of the spins. In the 
same way, the basins of attraction of each individual metastable state can be tiny, but 
what is important macroscopically is the sum of all the basins of attraction correspond- 
ing to the same mean overlap mo. As long as & is small, the distinction between a 
fixed point and a trajectory spanning the small subspace of phase space corresponding 
to the spins with weak local fields is irrelevant. As 6 grows so does the number of 
uncoupled spins, and eventually there is an abrupt opening up of the whole phase 
space at GC, and the network ceases to perform as a memory (Amit et a1 1987). These 
considerations suggest the importance of looking at the relevant order parameter (m 
in this case) rather than at the stability of fixed points, when analysing a network 
subject to noise. 

9. Conclusions 

Estimating the number of states stable to single spin flips is an approach limited in its 
scope, whose results should be confirmed with other methods. Yet it has proven its 
plausibility in the standard Hopfield model, where a suggestive correspondence emerges 
with the features derived from the thermodynamic solution. We have applied the 
method to asymmetrically diluted Hopfield networks, for which a comprehensive 
treatment of the asymmetrical dilution with extensive connectivity is lacking. The 
results indicate that the retrieval properties persist, but features like the storage capacity, 
dispersion and retrieval quality now depend essentially on the value of Oi, the ratio of 
the number of stored patterns to the connectivity. If we assume that the value &*, 
where the band of retrieval states merges into the wider band of uncorrelated metastable 
states, gives a fair approximation of the critical up to which the model has retrieval 
properties, then the storage capacity does not change more than by a factor of three 
or four going from a fully connected to an extremely diluted system. The overlap of 
the retrieval fixed points with the stored pattern they are close to depends on 6 alone, 
while asymmetry might affect the structure of nearby stable states. This structure 
appears to correspond to a spin glass associated to spins with low local field. The 
typical number of uncorrelated states, on the other hand, depends essentially on (Y 
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and is otherwise a constant in randomly diluted models, while it decreases with 
increasing asymmetry if one forces an asymmetrical dilution. A fully asymmetric 
model, however, has still an exponential number of metastable uncorrelated states, 
due to the effect of higher-order correlations in the coupling matrix. The lesson is 
that, to the extent that asymmetry weakens the uncorrelated spin-glass behaviour, it 
does not do it by eliminating many metastable states, but rather by deforming the 
dynamics (see, e.g., Crisanti and Sompolinsky 1987). While confirming these predic- 
tions analytically requires rather cumbersome replica calculations, the essential features 
can be tested with the results of computer simultations. 
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Appendix 

We show how to obtain the expressions (3) and (4) for (NJ, starting from equation 
(2).  Using the integral representation for the S functions one has 

We first carry out the quenched average over the w,. This is a product of terms 

n 6, E n (ex~(ailwi, + ~ j i w j i ) )  

1'1 1'1 

where 

1 
'IJ = +It? 6; s L '  

F 

One finds 

In b, = (a, + a],)? +;(a i  + a; , )y2k + alJaJ,y2h + . . . 

k = (1  - Y ) / Y  

where we have set 

and the difference between the three modes of dilution is in the factor h :  

The neglected terms, of higher order in a,, can be shown to give a vanishing contribution 
as N+co. 
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Performing in the integrals ( A l )  the following transformation of variables: 

4 S l Y  + 4, AI -+ A,Y 

one writes 

where only terms with p = Y have been kept. The terms with p # Y can also be neglected 
in the thermodynamic limit. 

Then 

where 

To perform the average over the [r we use a Gaussian transform 

If po patterns condense, we perform the quenched average over the remaining ( p  - p o )  
6. Now one can take the trace, to find 

where 
/ Pn \ 
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and the only average left is that over the discrete s corresponding to the condensed 
patterns. For finite p ,  a + 0, and one has the same equations one finds in the thermo- 
dynamics of the fully connected model with finite p. 

We are interested in the finite-a limit. If one expands the In cosh one has 

Setting 

by introducing 6 functions and representing them with integrals, one finally has 

where 

G = - a ( v + $ k u  -;hu’) - m,fi,, +xu - yu -;a ln[u +(1-  u)’]+ln 6 
and 

6 = d + D ( 4 )  exp(-x4*+iyc$)(cosh[(i4ml, + $)6’]). I 
( Ns) may now be evaluated with the saddle-point method. 

Considering only the case p o  = 1 we have 

y + m  +- 1+erf- @ = -  l+erf- 
y - m )  - ‘“( 2 2J;) ‘2”( 2J;; 

Solving the saddle-point equations for U, U, 61 to eliminate these variables, and 
substituting 

2x /a  = r y / a  = s 

one obtains formulae (3) and (4), where one should note, however, that det H is 
intended as the Hessian determinant with respect to the five variables 6, x, y, U, U. 
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